Spherical Radon Transform and Related Wavelet Transforms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inversion of spherical means using geometric inversion and Radon transforms

We consider the problem of reconstmcting a continuous function on R" from certain values of its spherical means. A novel aspect of our approach is the use of geometric inversion to recast the inverse spherical mean problem as an inverse Radon transform problem. W define WO spherical mean inverse problems the entire problem and the causal problem. We then present a dual filtered backprojection a...

متن کامل

Multiscaled Wavelet Transforms, Ridgelet Transforms, and Radon Transforms on the Space of Matrices

Let Mn,m be the space of real n × m matrices which can be identified with the Euclidean space R. We introduce continuous wavelet transforms on Mn,m with a multivalued scaling parameter represented by a positive definite symmetric matrix. These transforms agree with the polar decomposition on Mn,m and coincide with classical ones in the rank-one case m = 1. We prove an analog of Calderón’s repro...

متن کامل

Inversion algorithms for the spherical Radon and cosine transform

We consider two integral transforms which are frequently used in integral geometry and related fields, namely the cosine and the spherical Radon transform. Fast algorithms are developed which invert the respective transforms in a numerically stable way. So far, only theoretical inversion formulas or algorithms for atomic measures have been derived, which are not so important for applications. W...

متن کامل

Spherical wavelet transform for ODF sharpening

The choice of local HARDI reconstruction technique is crucial for discerning multiple fiber orientations, which is itself of substantial importance for tractography, and reliable and accurate assessment of white matter fiber geometry. Due to the complexity of the diffusion process and its milieu, distinct diffusion compartments can have different frequency signatures, making the HARDI signal sp...

متن کامل

Explicit inversion formulae for the spherical mean Radon transform

Abstract We derive explicit formulae for the reconstruction of a function from its integrals over a family of spheres, or for the inversion of the spherical mean Radon transform. Such formulae are important for problems of thermoand photo-acoustic tomography. A closed-form inversion formula of a filtrationbackprojection type is found for the case when the centres of the integration spheres lie ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 1998

ISSN: 1063-5203

DOI: 10.1006/acha.1997.0228